Introduction

The MFJ-989C roller inductor tuner is a 3000 watt PEP input, 1500 watt PEP output antenna tuner. These power ratings are for load impedances of 35-500 ohms. The MFJ-989C is designed to match 50 ohm output amplifiers, transmitters or transceivers to virtually any antenna. Peak and average forward power, reflected power, and SWR are displayed on the MFJ-989C's illuminated cross-needle meter.

The MFJ-989C uses a roller inductor "T" matching network. It continuously tunes all frequencies from 1.8 through 30 MHz. It will match dipoles, inverted-vee's, verticals, mobile whips, beams, random wires, and many other antennas. The MFJ-989C has rear panel connectors for coaxial and single or two wire feedlines. The **built-in balun** will work with balanced open wire, twinlead, or twin-axial feedlines.

An internal six position antenna-selector switch selects a built-in 50 ohm dummy load, two coaxial line outputs, or a single wire line-balanced line output. The coaxial line outputs can be selected in tuned (with tuner's matching network in line) or direct (no matching circuit) configurations.

Understanding Power Ratings

There are no standardized power rating systems for tuners. The names used (i.e. 3 kW Tuner) carry over from the time when amplifiers were rated by peak power input, and not the true RF power output. For example, the one thousand watt Johnson Matchbox was rated to handle a 1000 watt plate modulated AM transmitter (four kilowatts PEP transmitter input and 3000 watts PEP RF output). The Heathkit SB-220 was called a two kilowatt amplifier, and the rated CW output was approximately 600 watts. Matching tuners were called 2 kilowatt tuners, and these tuners safely handled 600 watts of CW power and 1200 watts PEP SSB.

The FCC has changed the power rating system of amplifiers, and tuners no longer follow amplifier power ratings. Most typical 1500 watt tuners remain able to safely handle 400-600 watts CW, and 600-900 watts PEP SSB.

Load conditions and control settings also greatly affect the power handling capability of the tuner. Tnetworks typically handle more power on higher frequency bands into higher load impedances. The
worst operating condition for T network tuners are low impedance capacitive reactance loads. Tnetwork tuners always handle the least power when operated on 160 meters into low impedance
capacitive reactive loads.

Follow the guidelines in this manual to avoid exceeding the ratings of this tuner.

Peak Reading SWR/Wattmeter

The cross-needle meter measures the peak or average FORWARD power, REFLECTED power, and SWR. The illuminated cross-needle meter operates with the antenna tuning circuit in or out of line. The wattmeter can be used without the tuning network by setting the ANTENNA SELECTOR to either of the two COAX DIRECT positions of the antenna selector. The wattmeter is active in all positions of the ANTENNA SELECTOR.

The meter's full scale forward and reflected power range is controlled by the left **POWER** switch that selects **2000W** (HI) or **200W** (LO). If your transmitter runs more than 200 watts of output power, set this switch to the **2000W** HI (in) position. If your transmitter has less than 200 watts of output, set this switch to the **200W** LO switch position (out).

MFJ-989C VersaTuner V Instruction Manual

Peak envelope power (PEP) is measured when the **PEAK** or **AVG POWER** push button (right-hand side) in placed in the **PEAK** (in) position. Peak power and average power values are equal with steady unmodulated carriers, FSK, or FM. The meter reading on these modes will be the same whether the **PEAK** / **AVG** button is pressed or released. On SSB, the PEP meter reading should be twice the average power with two tone test modulation.

On SSB, the ratio of PEP to average power varies with different voice characteristics. With most voices, the PEP reading is three to five times higher than the average voice power reading. The most accurate peak envelope power readings are obtained only with sustained carrier, voice or two tone test modulation. During normal voice modulation the wattmeter will typically indicate only 70% of the true peak envelope power.

Forward power is displayed on the left-hand FORWARD meter scale. This scale is calibrated from 0 to 200 watts and is read directly in the 200 watt position. Each picket (scale mark) represents 5 watts below 40 watts and 10 watts between 40 and 200 watts. In the **2000W** (HI) position the forward power scale must be multiplied by 10. Each picket represents 50 watts below 400 watts and 100 watts from 400 to 2000 watts.

The reflected power is read on the right-hand REFLECTED meter scale. This scale indicates 50 watts full scale when the **200W** power sensitivity is selected, and 500 watts full scale when the **2000W** power scale is selected. This scale has a picket every watt below 20 watts and every 5 watts above 20 watts. This scale is also multiplied by 10 when using the 2000W power position.

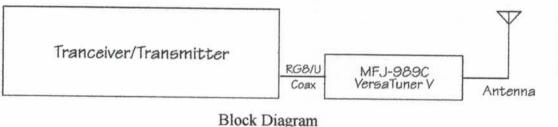
The most accurate power readings occur in the upper half of the meter scales. When trying to measure power with a less than perfect match, the reflected power should be subtracted from the forward power reading.

The SWR is read directly from eleven red SWR curves that range from 1:1 to infinity. SWR is measured by observing the point where the forward and reflected power needles cross. The SWR is indicated by the red curve closest to the needle crossing point. No cumbersome or time consuming SWR sensitivity adjustments are required with this meter.

The wattmeter has an internal lamp that backlights the meter scale. The lamp circuit requires power from an external 12 Vdc source, such as the optional MFJ-1312B power supply. The rear panel jack accepts a 2.1 mm coaxial plug with the center conductor positive (+) and the sleeve negative (-). The negative lead is grounded inside the tuner. The METER LAMP ON / OFF switch turns the meter lamp off and on.

Antenna Selector

The ANTENNA SELECTOR allows you to select 2 rear panel SO-239 coaxial connectors either direct or through the tuner, a 50 ohm dummy load, and single wire or balanced feedline antennas.


Installation

CAUTION: Locate the tuner so the rear is not accessible during operation.

- Locate the tuner in a convenient location at the operating position. If random wire or balanced line
 operation is used, the ceramic feed through insulators may have high RF voltages. These voltages
 can cause serious RF burns if the terminals are touched when transmitting. Be sure to locate the
 tuner so these terminals can not be accidentally contacted during operation.
- Install the tuner between the transmitter and the antenna. Use a coaxial cable (such as RG-8/U) to connect the transmitter (or amplifier) to the connector marked TRANSMITTER on the rear of the tuner.
- Connect the antenna(s) to the tuner as follows:
 - A. Coaxial feedlines connect to the coax connectors 1 and 2 coax lines (fed directly or through matching circuit as selected by the ANTENNA SELECTOR switch.
 - B. Random wire or single wire line antennas should be connected to the WIRE connector on the back of the unit.

Note: Route all single and random wire antennas to prevent RF burn hazard.

- C. Any balanced feedline (open wire, twinlead, or twin-axial lines) is connected to the BALANCED LINE terminals. Also, connect a jumper wire where indicated.
- 4. A ground post is provided for an RF ground connection.

Block Diagram Figure 1

Operation

The roller inductor has maximum inductance at about 000 and minimum inductance at 125 on the reference counter. The capacitors have maximum capacitance at 0 and minimum capacitance at 10. In simple language, as the frequency is increased, the normal control positions rotate clockwise just like on other equipment.

Note: Always use the most capacitance (settings closest to 0) for the most power handling and the least loss. Use the smallest possible inductance (the lowest number possible) also.

Note: The MFJ Air CoreTM Roller Inductor is designed with an exclusive Self-Resonance KillerTM that keeps potentially damaging self-resonances away from your operating frequency. This feature is switched in and out of the circuit with a built-in switch in the roller. Therefore, as you turn the roller up and down, you may feel a bump. This is normal and you should not be alarmed.

Increase the number the controls are set at (on a given frequency) to INCREASE the matching range. Remember, this LOWERS the efficiency and power handling capability of the tuner.

- Tune the exciter into a dummy load (most solid state transmitters are "pre-tuned" to 50 ohms and do not require adjusting with the dummy load).
- 2. Select the desired antenna with the ANTENNA SELECTOR.
- Position the ANTENNA and TRANSMITTER controls at the following settings:

160 M:	0	20 M:	4
80 M:	1	17 M:	6
75 M:	2	15 M:	7
40 M:	3	12 M;	8
30 M:	3-1/2	10 M:	8-1/2

Then place the POWER switch in the LO and AVG meter positions.

4. Starting from the minimum INDUCTOR position (highest number), turn the INDUCTOR control counter-clockwise (adding more inductance) while applying a slight amount of power (less than 25 watts). Tune for the lowest reflected power and maximum forward power (lowest SWR). The lowest reading should occur somewhere above the following recommended inductor positions.

Recommended Tuning Chart

Frequency (MHz)	Transmitter	Inductor (counter indicator)*	Antenna	Load (ohms)
1.8	0	48	0	50
1.8	0	29	0	600
2.0	0	59	0	50
2.0	0	43	0	600
3.5	1	93	1	50
3.5	3	85	0	600
3.75	1 1/2	95	1 1/2	50
3.75	4	86	0	600
4.0	2	97	2	50
4.0	5	87	0	600
7.15	3	110	3	50
7.15	7	106	0	600
10.1	3 1/2	115	3 1/2	50
10.1	8	113	0	600
14.2	4	118	4	50
14.2	8	117	0	600
18.1	6	119	6	50
18.1	8	118	0	600
21.2	7	119	7	50
21.2	8	118	0	600
24.9	8	119	8	50
24.9	8 1/2	119	4	600
28.5	8 1/2	120	8 1/2	50
28.5	9	120	5	600

^{*}Gear drive model.

MFJ-989C VersaTuner V Instruction Manual

In this order, adjust the ANTENNA control, INDUCTOR, and TRANSMITTER control for lowest reflected power (and SWR). Repeat this step a few times until the reflected power is zero.

- 6. If the SWR did not reach 1:1 in step 5, turn the INDUCTOR control counter clockwise (to a higher number) again and repeat Step 5. For maximum power handling and efficiency, always adjust the capacitors to the lowest front panel number (highest capacitance) that allows proper antenna matching. This insures maximum power handling and lowest power loss in the tuner.
- Advance the power (do not exceed 100 watts) and, if necessary, touch up the ANTENNA and TRANSMITTER controls for minimum reflected power and maximum forward power (lowest SWR). Remove the power.
- After adjusting the tuner for minimum SWR, the amplifier may be turned on. The METER switch should be placed in the HI position, and the amplifier tuned according to the manufacturer's instruction.
- For quick retuning of the tuner, record the INDUCTOR and CAPACITOR settings for each band.

Note: Maximum power handling occurs when both the TRANSMITTER and ANTENNA capacitors and the INDUCTOR are set at the lowest front panel numbers that permit matching the antenna. Following this guideline will insure maximum power handling capability and efficiency, and the least critical tuning adjustments.

Operating Notes

- 1. While this tuner is designed to have as large a tuning range as possible, there are limits to the tuning range of the capacitors. Some antennas may require more or less capacitance than the controls have. In these cases, the SWR may not be reduced to 1:1. If the SWR is higher than the limits on your rig, try changing the length of the antenna or feedline to bring the impedance within the tuning range of the tuner.
- When adjusting the tuner, use the lowest number on the TRANSMITTER, ANTENNA, and INDUCTOR controls that produces a good SWR. This will reduce tuner losses and increase the power rating of the tuner.
- If the INDUCTOR counter slips out of calibration, turn the INDUCTOR fully counter clockwise.
 Then, with a small screw driver or pencil, push the reset button through the hole to the right of the
 counter. This resets the counter to "000".

WARNING:

- Never operate the tuner with the top removed. Contact with the components inside the tuner while transmitting will result in painful RF burns.
- Never rotate the ANTENNA SELECTOR switch while transmitting. Doing so may permanently damage the switch.
- Locate the tuner so that the rear terminals ARE NOT accessible during operation. The single wire
 and balanced line connections may have high voltage while being used.
- 4. Disconnect all antennas from the tuner during lightning storms.
- 5. Always tune with low power (i.e. less than 100 watts). Apply maximum power only after tuning up.
- Be sure to adjust the SWR before transmitting at high power (above 100 watts). Do Not transmit
 with a high SWR for extended periods of time.

In Case Of Difficulty

If the funer fails to tune, please **double check** all connections and follow the tuning procedures again. Be sure you are using *enough inductance* (low enough inductance number) and have the *capacitors open* far enough (higher front panel numbers).

If the tuner arcs at the rated power levels, please double check all connections and follow the tuning procedures again. The power rating of this tuner is 1500 watts PEP RF power. Be sure you are using the least amount of inductance (highest number) and the greatest capacitance (lowest number) possible that still allows matching the load on the operating frequency.

Note: If this tuner arcs when operating on the 160 meter band, it may be necessary to reduce transmitter output power.

If you are still unsuccessful, but the tuner does adjust and operate when switched to a dummy load or another antenna, please read the **Antenna System Hints** section.

Grounding Hints

To minimize RFI, single wire feedlines (such as used with Windom or longwire antennas) should be kept away from other wiring. Radiation will be minimized if the single wire feeder runs parallel and reasonably close to the wire that connects the tuner to the outdoor ground. The antenna feed wire should be adequately insulated to prevent arcing or accidental contact.

For safety, please use good dc and RF grounds. It is particularly important to have a good RF ground while using a single wire feeder. When using a single wire feeder, the tuner needs something to "push" against in order to force current into the single wire feedline. If a good RF ground is not available, RF will usually find it's way back into the power line (RFI), transmitter audio circuits (RF feedback), or the operator (RF burns).

Water pipes and ground rods provide good dc and ac safety grounds, but they are often inadequate for RF grounding because they are single conductors. Ground rods by themselves are almost useless for dependable RF grounding.

RF grounds work much better when "spread out" over a large area, especially when they employ multiple connections directly to the equipment ground point. Water pipes, heating ducts, and fences may work (especially if they are connected together with multiple wires), but the best RF grounds are radial systems or multi-wire counterpoises. Radials and counterpoises provide large, low resistance surfaces for RF energy.

RF and lightning travels on the surface of conductors. Braided or woven conductors have high surface resistance to lightning and RF. Ground leads for RF and lightning should have wide smooth surfaces. Avoid the use of woven or braided conductors in RF and lightning grounds unless the lead needs to be flexible.

CAUTION: For operator safety, a good outside earth ground or water pipe ground should always be installed and connected to the case of the MFJ-989C. Make certain the safety ground also connects to the transmitter and other station accessories. A wing nut post marked GROUND is provided for ground connection(s).

MFJ-989C VersaTuner V Instruction Manual

Antenna System Hints

For operator safety, a good outside earth ground or water pipe ground should always be installed and connected to the case of the MFJ-989C. Make certain the safety ground also connects to the transmitter and other station accessories. A wing nut post marked **GROUND** is provided for ground connection(s).

Location

For the best performance, an end-fed longwire wire antenna should be at least one quarter-wavelength long at the operating frequency. Horizontal dipole antennas should be at least a half-wavelength long and located as high and clear as possible. While good RF grounds help the signal in almost any transmitting installation, it is extremely important to have good RF grounds with long wire or other Marconi style antennas.

Matching Problems

Most matching problems occur when the antenna system presents an extremely high impedance to the tuner. When the antenna impedance is much lower than the feedline impedance, an *odd quarter-wavelength* feedline converts the low antenna impedance to a very high impedance at the tuner. A similar problem occurs if the antenna has an extremely high impedance and the transmission line is a multiple of a half-wavelength. The half-wavelength line *repeats* the very high antenna impedance at the tuner. Incorrect feedline and antenna lengths can make an otherwise perfect antenna system very difficult or impossible to tune.

One example where this problem occurs is on 80 meters when an odd quarter-wave (60 to 70 foot) open wire line is used to feed a half-wave (100 to 140 foot) dipole. The odd quarter-wave line transforms the dipole's low impedance to over three thousand ohms at the tuner. This is because the mismatched feedline is an *odd multiple* of 1/4 wavelength long. The line *inverts* (or teeter-totters) the antenna impedance.

A problem also occurs on 40 meters with this same antenna example. The feedline is now a multiple of a half-wave (60 to 70 foot) and connects to a full-wave high impedance antenna (100 to 140 foot). The half-wave line repeats the high antenna impedance at the tuner. The antenna system looks like several thousand ohms at the tuner on 40 meters.

This places enormous strain on the balun and the insulation in the tuner, since voltages can reach several thousand volts. This can cause component arcing and heating.

MFJ-989C VersaTuner V Instruction Manual

The following suggestions will reduce the difficulty in matching an antenna with a tuner:

- Never center feed a half-wave multi-band antenna with a high impedance feedline that is close to an odd multiple of a quarter-wave long.
- Never center feed a full-wave antenna with any feedline close to a multiple of a half-wave long. 2.
- If this tuner will not "tune" a multi-band antenna, add or subtract 1/8 wave of feedline (for the band that won't tune) and try again.
- Never try to load a G5RV or center fed dipole on a band below the half-wave design frequency. If you want to operate an 80 meter antenna on 160 meters, feed either or both conductors as a longwire against the station ground.

To avoid problems matching or feeding any dipole antenna with high impedance open wire lines, keep the lines around these lengths. [The worst possible line lengths are shown in brackets]:

160 meters dipole: 35-60, 170-195 or 210-235 feet

[Avoid 130, 260 ft]

80 meters; dipole: 34-40, 90-102 or 160-172 feet

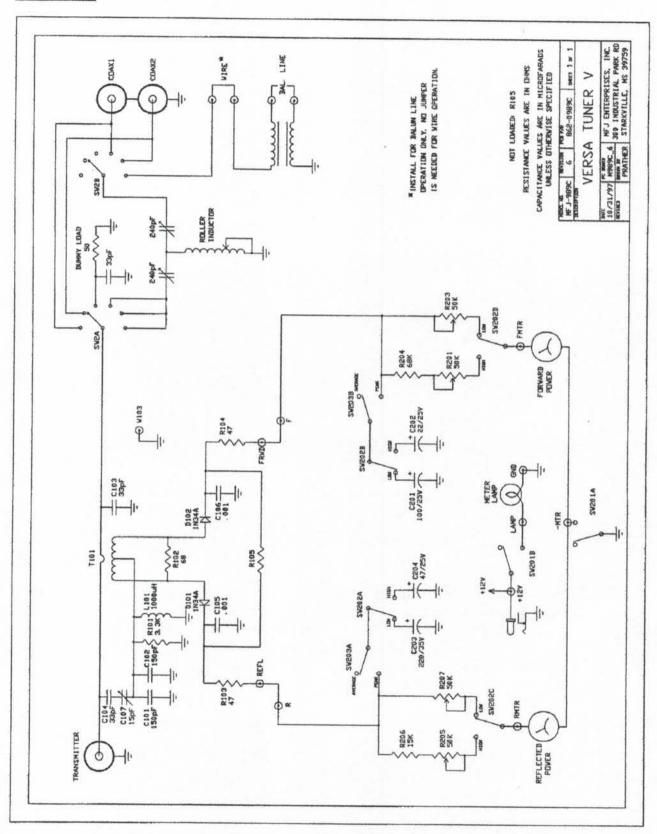
[Avoid 66, 135, 190 ft]

40 meters; dipole: 42-52, 73-83, 112-123 or 145-155 feet

[Avoid 32, 64, 96, 128 ft]

Some slight trimming or adding of feedline may be necessary to accommodate the higher bands.

WARNING:


To avoid problems, a dipole antenna should be a full half-wave on the lowest band. On 160 meters, an 80 or 40 meter antenna fed the normal way will be extremely reactive with only a few ohms of feedpoint resistance. Trying to load an 80 meter halfwave dipole (or shorter) antenna on 160 meters can be a disaster for both your signal and the tuner. The best way to operate 160 meters with an 80 or 40 meter antenna is to load either or both feedline wires (in parallel) as a longwire. The antenna will act like a "T" antenna worked against the station ground.

Technical Assistance

If you have any problem with this unit first check the appropriate section of this manual. If the manual does not reference your problem or your problem is not solved by reading the manual, you may call MFJ Technical Service at 601-323-0549 or the MFJ Factory at 601-323-5869. You will be best helped if you have your unit, manual and all information on your station handy so you can answer any questions the technicians may ask.

You can also send questions by mail to MFJ Enterprises, INC., 300 Industrial Park Road, Starkville, MS 39759; by Facsimile (FAX) to 601-323-6551; or by email to techinfo@mfjenterprises.com. Send a complete description of your problem, an explanation of exactly how you are using your unit, and a complete description of your station.

Schematic

MFJ VERSA TUNER V

MODEL MFJ-989C
INSTRUCTION MANUAL

CAUTION: Read All Instructions Before Operating Equipment

MFJ ENTERPRISES, INC.

P.O.BOX 494, MISSISSIPPI STATE, MS 39762, USA

COPYRIGHT © 1990 MFJ ENTERPRISES, INC.

INSTRUCTIONS

The MFJ-989C Versa Tuner V is designed for use in high power amateur transmitting installations up to 3KW PEP. The tuner is designed to match most antenna systems from 1.8 to 30 Mhz.

This tuner has a built in 50 ohm, 300W dummy load for easily tune up of your exciter. The MFJ-989C also has a cross needle SWR/Wattmeter to allow you easy tune up and power measurement.

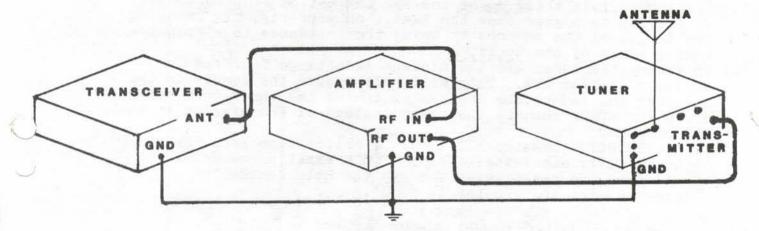
PEAK READING SWR/WATTMETER

The cross-needle meter lets you simultaneously read peak or average Forward power, Reflected power and SWR in two ranges. read FORWARD POWER, set the power range switch to HI (2000 watts) or LO (200 watts). Next read the power level on the FORWARD SCALE. REFLECTED POWER is shown at the same time on the REFLECTED POWER SCALE. SWR is read by observing where the two needles cross. No SWR sensitivity adjustment is needed to read SWR. You get a peak holding reading when you set the METER button to PEAK. Read the power level off of both scales.

The HI range is 2KW Forward and 500W reflected. The LO

range is 200W forward and 50W reflected.

The meter lamp can be powered by a 12V DC source, such as the optional MFJ-1312 power supply. Use a 2.5mm plug with the tip of the plug connected to the positive. METER LAMP ON/OFF switch will activate the meter lamp.


ANTENNA SELECTOR

The ANTENNA SELECTOR allows you to select 2 coax fed antennas either direct or through the tuner, a 50 ohm dummy load, and a wire or balanced line antenna.

INSTALLATION

- 1. Locate the tuner in a convenient location at the operating position. NOTE: LOCATE THE TUNER SO THE REAR IS NOT ACCES-SABLE DURING OPERATION. If random wire or balanced line operation is used the ceramic feed through insulators will have high RF voltages which can cause serious RF burns if touched when transmitting.
- 2. Install the tuner between the transmitter and the antenna as shown in the diagram below. Use coax cable such as RG-8/U to connect the transmitter to the connector marked TRANSMITTER on the rear of the tuner.
- 3. Connect the antenna(s) to the tuner as follows:
 - coax cable feed lines to the coax connectors 1 and 2 coax lines may be fed direct or through the tuner as selected by the ANTENNA SELECTOR switch.

- B. Wire antenna is connected to the WIRE terminal.
- C. Balanced line antenna is connected to the BALANCED LINE terminals. A jumper needs to be connected between the Wire terminal and the unmarked terminal below it as indicated by the solid line.
- 4. A ground post is provided for ground connection.

CONNECTION DIAGRAM

OPERATION

The roller inductor has a maximum inductance at 99 and a minimum at 00 on the reference counter. The capacitors have a maximum at 10 and a minimum at 0.

 Tune the exciter up into the dummy load. (most solid state transmitters are pretuned to 50 ohms and do not require tuning up into the dummy load.)

2. Select the desired antenna with the ANTENNA SELECTOR.

3. Select the desired antenna with the ANTENNA and TRANSMITTER controls to about 4.

4. Starting from minimum on the INDUCTOR, tune for maximum noise and signals. If the maximum noise and signal setting is not found set the inductor to the setting in TABLE 1 and proceed to the next step.

5. With the linear amplifier OFF or in stand-by set the meter power switch to Lo range, transmit a low power signal (10 to 50 watts).

- 6. Adjust the ANTENNA and TRANSMITTER controls for minimum. If SWR is not 1:1 adjust the inductor up or down and repeat Step 6. If the capacitors are at maximum capacitance, increase the inductance. If the capacitors are at minimum capacitance, decrease the inductance.
- After minimum SWR is achieved the amplifier may be turned on and tuned up according to the manufacturer's instruction.
- 8. For quick retuning of the tuner, record the INDUCTOR and CAPACITOR settings.

OPERATING NOTES

1. The tuner is designed to have as large a tuning range as possible. But there are limits to the tuning range of the capacitors and inductor. This means that some antennas may require more or less inductance or capacitance than the controls have. In these cases the SWR may not be reduced to 1:1. If the SWR is higher than the limits on your rig, try changing the length of the antenna to bring the impedance to within the tuning range of the tuner.

2. In tuning the tuner use the minimum inductance required to obtain a minimum SWR. This will help reduce the losses in the inductor and reduce the chances of tuning the tuner to a point where the tuner absorbs the power instead of transfering it to

the antenna.

3. If the INDUCTOR counter slips out of calibration turn the INDUCTOR fully clockwise. Then, with a small screw driver or pencil push the reset lever through the hole beside the counter and set the counter to "000".

Table 1 Initial Tune-up Inductor Settings

BAND	INDUCTOR
160 M	99
80 M	48
40 M	18
20 M	8
15 M	4
10 M	2

TABLE 1: Initial Tune-up Inductor Settings

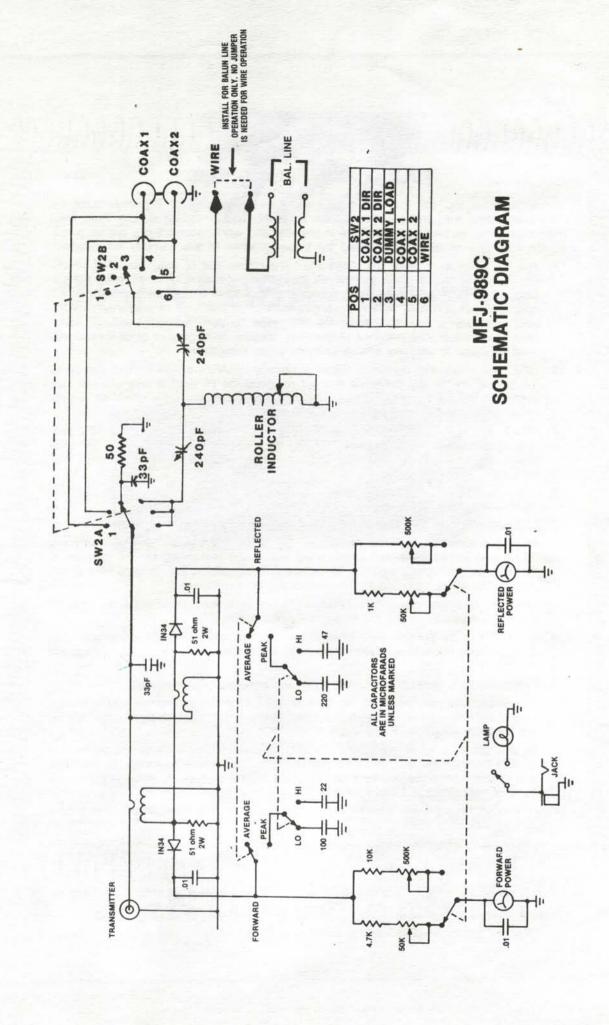
The exact setting will These settings are approximate. NOTE: depend on the particular antenna system.

WARNING

1. Never operate the tuner with the top removed. The voltages inside are very dangerous during operation.

2. Never rotate the ANTENNA SELECTOR switch while transmitting,

damage to the switch may result.

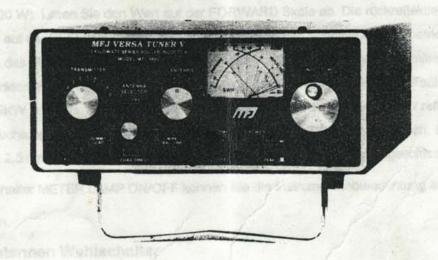

3. Locate the tuner so that it will not be accessible from the rear.

4. Disconnect the antennas from the tuner during lighting and storms.

5. Always tune with low power (i.e. less than 100 watts). Apply

maximum power only after tuning up.

6. Do not key transmitter into high SWR for a long period of time.


FULL 12 MONTHS WARRANTY

MFJ Enterprises, Inc. warrants to the original owner of this product, if manufactured by MFJ Enterprises, Inc. and purchased from an authorized dealer or directly from MFJ Enterprises, Inc. to be free of defects in material and workmanship for a period of 12 months from date of purchase provided the following terms of this warranty are satisfied.

- 1. The purchaser must retain the dated proof-of-purchase (bill of sale, cancelled check, credit card or money order receipt, etc.) describing the product to establish the validity of warranty claim and must submit the original or a machine-reproduction of such proof-of-purchase to MFJ Enterprises, Inc. at the time of warranty service. MFJ Enterprises, Inc. shall have the discretion to deny warranty without dated proof-of-purchase. Any evidence of alteration, erasure, or forgery of proof-of-purchase shall be cause to void any and all warranty terms immediately.
- MFJ Enterprises, Inc. agrees to repair or replace at MFJ's option without charge to the original owner any defective product provided the product is returned postage prepaid to MFJ Enterprises, Inc. with a personal check, cashier's check or money order for \$10.00 covering postage and handling.
- MFJ Enterprises, Inc. will supply replacement parts free of charge for any MFJ product under warranty upon request. A dated proof-of-purchase and a \$10.00 personal check, cashier's check or money order must be provided to cover postage and handling.
- This warranty is NOT void for owners who attempt to repair defective units. Technical consultation is available by calling (601) 323-5869.
- 5. This warranty does not apply to kits sold or manufactured by MFJ Enterprises, Inc.
- 6. Wired and tested PC board products are covered by this warranty provided only the wired and tested PC board is returned. Wired and tested PC boards installed in the owner's cabinet or connected to switches, jacks, cables, etc. sent to MFJ Enterprises, Inc. will be returned at the owner's expense unrepaired.
- Under no circumstances is MFJ Enterprises, Inc. liable for consequential damages to person or property by the use of any MFJ product.
- Out-of-Warranty Service: MFJ Enterprises, Inc. will repair any out-of-warranty product provided the unit is delivered prepaid. All charges will be shipped COD to the owner.
- 9. This warranty is given in lieu of any other warranty express or implied.

- MFJ Enterprises, Inc. reserves the right to make changes or improvement in design or manufacture without incurring any obligation to install such changes upon any of the products previously manufactured.
- 11. All MFJ products to be serviced in-warranty or out-of-warranty should be addressed to MFJ Enterprises, Inc., 921A Louisville Road, Starkville, Mississippi 39759, USA and must be accompanied by a letter describing the problem in detail along with a copy of your dated proof-of-purchase.
- This warranty gives you specific rights, and you may also have other rights which vary from state to state.

MFJ VERSA TUNER V

Modell MFJ-989C Bedienungsanleitung

Diese Anleitung vor dem Betrieb aufmerksam lesen!

Kombi Elektronik

Am Mühlberg 22, 61279 Grävenwiesbach

Copyright dt. Übersetzung by Kombi Elektronik. Vervielfältigung nur zum privaten Gebrauch. Gewerbliche vervielfältigung wird strafrechtlich verfolgt. (1993)

Anleitung

Der MFJ-989C Versa Tuner V wurde für Amateurfunksender mit hoher Leistung bis 3 KW entwickelt. Mit dem Tuner können fast alle Antennen im Frequenzbereich von 1,8 bis 30 MHz angepaßt werden. Der Tuner hat ein eingebautes 50 Ohm, 300 Watt Dummy Load zur einfachen Abstimmung des Steuersenders. Weiterhin ist ein übersichtliches Kreuzzeiger SWR/ Wattmeter vorhanden.

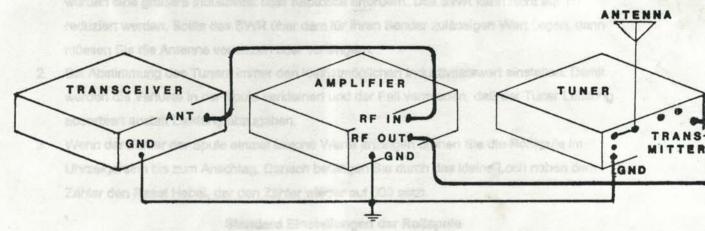
SWR/ Wattmeter mit Peak Anzeige

Das Kreuzzeigerinstrument zeigt gleichzeitig Spitzen- oder mittlere Leistung, reflektierte Leistung und SWR an. Um die Sendeleistung abzulesen, stellen Sie den Meßbereichsschalter auf HI (2000 W) oder LO (200 W). Lesen Sie den Wert auf der FORWARD Skala ab. Die rückreflektierte Leistung wird gleichzeitig auf der REFLECTED POWER Skala angezeigt. Im Schnittpunkt der beiden Zeiger können Sie das SWR ablesen. Es ist keine Einstellung nötig, um das SWR zu ermitteln.

Bei gedrücktem PEAK Schalter haben Sie eine Spitzenwertanzeige. Lesen Sie Peak Power auf der HI Skala (2KW vorwärts, 500W reflektiert) oder LO Skala (200 W vorwärts, 50 W reflektiert) ab.

Eine Beleuchtung der Instrumente ist mit einem externen 12 VDC Netzteil möglich. Sie brauchen ein Netzteil mit 2,5 mm Klinkenstecker. Die Spitze des Steckers muß an Plus angeschlossen sein.

Mit dem Schalter METER LAMP ON/OFF können Sie die Instrumentenbeleuchtung an- und ausschalten.


Antennen Wahlschalter

Mit dem ANTENNA SELECTOR können Sie 2 Koaxzuleitungen anwählen, entweder direkt oder über den Tuner. Weiterhin ein 50 Ohm Dummy Load, Drahtantenne und symmetrisch gespeiste Antenne (balanced line).

Installation

- Stellen Sie den Tuner an einem gut erreichbarem Platz auf.
 Wichtig: Die Rückseite des Tuners darf bei Betrieb nicht zugänglich sein.
 Wenn mit Langdraht oder symmetrisch gespeister Antenne gearbeitet wird stehen die Anschlüsse mit keramischer Durchführung unter HF Spannung, die bei Berührung zu ernsthaften Verletzungen führen kann.
- Installieren Sie den Tuner zwischen Antenne und Sender wie im Diagramm gezeigt. Verwenden Sie hierfür geeignete Koaxkabel, z.B. RG-8/U.
- 3. Schließen Sie die Antenne an den Tuner wie folgt an:
 - A. Koaxkabel an den Anschluß COAX 1 oder 2. Am Antennenwahlschalter k\u00f6nnen Sie dann COAX DIRECT (Umgehung des Tuners) oder COAX w\u00e4hlen (via Tuner).
 - B. Drahtantennen werden an den WIRE Anschluß angeschlossen.

- C. Symmetrisch gespeiste Antennen verbinden Sie mit BALANCED LINES. Eine Drahtbrücke muß zwischen dem WIRE Anschluß und dem nichtbezeichneten Anschluß darunter gelegt werden.
- 4. Ein Ground Anschluß ist für die Erdung vorhanden.

Anschlußplan

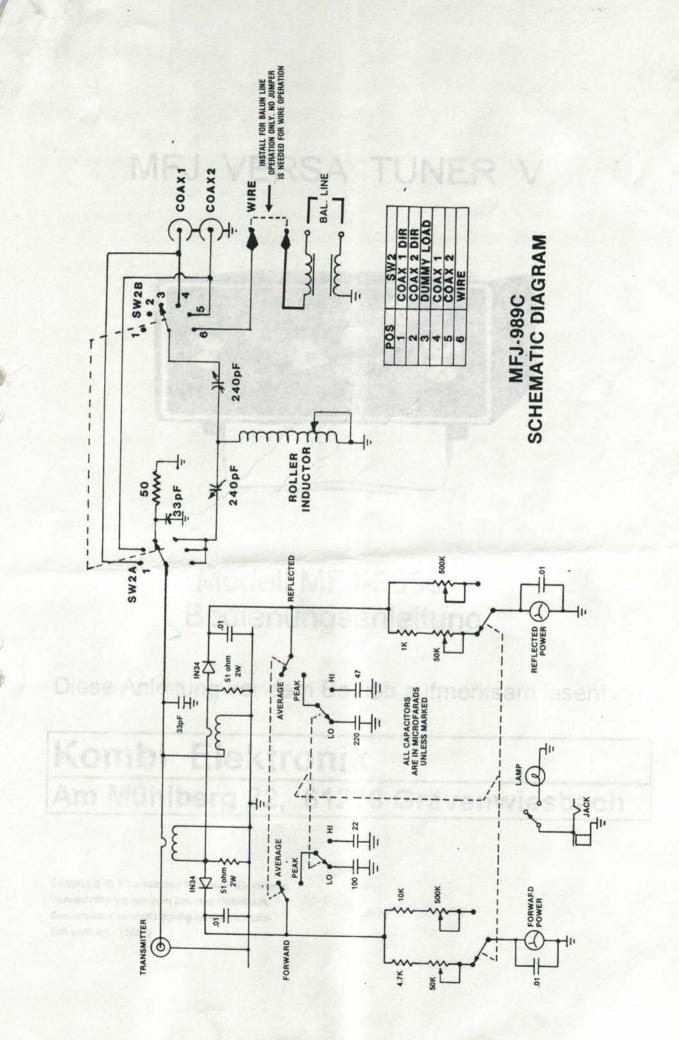
Betrieb:

Die Rollspule hat Ihre maximale Induktivität bei 99 und minimale bei 00 auf der Skala. Die Kondensatoren haben ihr Maximum bei 10 und Minimum bei 0.

- Stimmen Sie den Sender mit dem eingebauten Dummy Load ab. Bei Transistorsendern ist die normalerweise nicht erforderlich!
- 2. Wählen Sie die gewünschte Antenne am Antennenwahlschalter.
- 3. Stellen Sie beide Drehkondensatoren auf 4.
- Bei 0 beginnend drehen Sie die Rollspule auf maximales Empfangssignal. Sollte ein Maximum nicht erkennbar sein, dann nehmen Sie die Einstellung aus der Tabelle auf der nächsten Seite.
- Mit Ausgeschalteter Endstufe stellen Sie Ihren Sender auf eine kleine Leistung (10 50 W) und wählen am Tuner die LO Stellung.
- 6. Drehen Sie an den ANTENNA und TRANSMITTER Drekos auf minimales SWR. Sollte das SWR größer als 1:1 sein, dann verändern Sie die INDUCTOR Einstellung etwas nach oben oder unten. Wenn die Drehkondensatoren auf maximaler Kapazität stehen (10), müssen Sie die INDUCTOR Einstellung erhöhen, bzw. bei minimaler Kapazität (0) reduzieren.
- 7. Wenn alle Einstellungen für minimales SWR vorgenommen sind können Sie Ihren Verstärker einschalten und abstimmen. Dies sollte immer mit einem Dummy Load geschehen (z.B. MFJ-250), um nicht unnötig HF abzustrahlen. Sie wollen sicher nicht zu den Funkamateuren gehören, die durch unnötiges abstimmen auffallen. Durch den Tuner ist der Anschlußwiderstand Ihrer Antennenleitung exakt an 50 Ohm angepaßt.. Dies bedeutet, daß sie bei Abstimmung der Endstufe mit einem 50 Ohm Dummy Load die PA nicht nochmals an der Antenne nachstimmen müssen!
- Notieren Sie die Werte von INDUCTOR und CAPACITOR.

Bedienungshinweise

- 1. Der Tuner wurde für einen möglichst großen Abstimmbereich entwickelt. Trotzdem kann es passieren, daß Sie an die Grenzen der Rollspule oder Drekos kommen, dh. einige Antennen würden eine größere Induktivität oder Kapazität erfordern. Das SWR kann nicht auf 1:1 reduziert werden. Sollte das SWR über dem für Ihren Sender zulässigen Wert liegen, dann müssen Sie die Antenne verkürzen oder verlängern.
- Bei Abstimmung des Tuners immer den kleinstmöglichen Induktivitätswert einstellen. Damit werden die Verluste in der Spule verkleinert und der Fall vermieden, daß der Tuner Leistung absorbiert anstatt Leistung abzugeben.
- Wenn der Zähler der Spule einmal falsche Werte anzeigen drehen Sie die Rollspule im Uhrzeigersinn bis zum Anschlag. Danach betätigen Sie durch das kleine Loch neben dem Zähler den Reset Hebel, der den Zähler wieder auf 000 setzt.


Standard Einstellungen der Rollspule

Band	Rollspule Zähler
160 m	99
80 m	48
40 m	18
20 m	8
15 m	4
10 m	2

Hinweis: Dies sind ungefähre Einstellungen. Die genauen Werten sind von Ihrer Antenne abhängig.

Warnung:

- Niemals den Tuner mit abgenommener Haube betreiben. Die Spannungen im Inneren k\u00f6nnen sehr gef\u00e4hrlich sein.
- Niemals den Antennenwahlschalter betätigen während Sie senden. Der Schalter kann dadurch beschädigt werden.
- Plazieren Sie den Tuner so, daß er auf der Rückseite nicht berührt werden kann.
- 4. Entfernen Sie bei Gewittern alle Antennen vom Tuner.
- Immer mit kleiner Leistung abstimmen (unter 100 W). Volle Leistung erst nach dem Abstimmen anlegen.
- 6. Bei hohem SWR nicht längere Zeit mit hoher Leistung über den Tuner senden.

